Reexam Mathematical Physics, Prof. G. Palasantzas

- Total number of points 100
- 10 points for coming to the exam
- Justify briefly your answers for all problems

Problem 1 (10 points) Show that $\lim _{\mathrm{n} \rightarrow \infty} \frac{x^{n}}{\mathrm{n}!}=0 \quad$ with $x \in(-\infty,+\infty)$

Problem 2 (15 points)

Determine weather the series $\sum_{n=1}^{\infty} \frac{\cos 3 n}{1+(1.2)^{n}} \quad$ is convergent or divergent.

Problem 3 (20 points)

Suppose a mass m is attached to a spring with spring constant k , and let $k=m \omega^{2}$. If an external force $F(t)=F_{o} \cos \left(\omega_{o} t\right)\left(\omega_{o} \neq \omega\right)$ is applied, then we have the equation of motion for non-zero dissipation ($c>0$):

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=F(t) \tag{1}
\end{equation*}
$$

Show that a particular solution of Eq. (1) $\left(c^{2}-4 m k<0\right)$ is given by : $x_{p}(t)=\left\{\frac{F_{0}}{\sqrt{\left(k-m \omega_{0}^{2}\right)^{2}+\left(c \omega_{0}\right)^{2}}}\right\} \cos \left(\omega_{0} t+\delta\right)$ Tip: $\quad x(t)=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)=A \cos (\omega t+\delta)$ with $\mathrm{A}=\sqrt{{c_{2}{ }^{2}+c_{1}^{2}}^{2}}$ and $\tan \delta=-c_{2} / c_{1} \quad \tan \delta=-c \omega_{0} /\left(k-m \omega_{0}^{2}\right)$

Problem 4 (15 points)

Find the sine series solution of the second order differential equation $\frac{d^{2} X}{d t^{2}}+10 X=f(t)$ with $f(t)$ an odd function $[f(-t)=-f(t)]$ and boundary conditions $X(t=0)=X(t=L)=0$.
Tip: The Fourier sine expansion has the general form $Y(x)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi x / L), b_{n}=(2 / L) \int_{0}^{L} Y(x) \sin (n \pi x / L) d x$, for $\mathrm{x} \in[0, L]$

Problem 5 (10 points)

Consider the Fourier transform definitions $F(k)=\int_{-\infty}^{+\infty} F(x) e^{-i 2 \pi k x} d x$ and $\delta(k)=\int_{-\infty}^{+\infty} e^{-i 2 \pi k x} d x$
Calculate the Fourier transform of $F(x)=\sin ^{2}(\varepsilon x)+\cos (\varepsilon x)$

Problem 6 (20 points)

(a: 10 points) Calculate the analytic form of the function $\mathrm{G}(\omega)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} t^{2} e^{-|\omega t|} e^{-2 \pi i k t} \cos ^{2}(8 \pi k) d t d k$ with ω a real number.
(b: 10 points) Consider the boundary value problem for the one-dimensional heat equation for a bar of length L with zero-temperature ends. The general solution $u(x, t)$ (with $t \geq 0$ and $0 \leq x \leq L$) has the form:

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} e^{-\lambda_{n}^{2} t} \sin \frac{n \pi}{L} x, \lambda_{n}=\frac{c n \pi}{L}
$$

Calculate the solution $u(x, t)$ for $t>0$ if $u(x, t=0)=f(x)=2 \sin (6 \pi x / L) \cos (3 \pi x / L)$.

Problem 1

We form the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$, and we show that it is covergent using the ratio test.

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right|=\frac{|x|}{n+1} \rightarrow 0<1 \text { with } x \in(-\infty,+\infty)
$$

Therefore, since the series is convergent we have: $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{x^{n}}{\mathrm{n}!}=0$

Problem 2

Check convergence of $\rightarrow \sum_{n=1}^{\infty} \frac{\cos 3 n}{1+(1.2)^{n}}$
$\left|a_{n}\right|=\left|\frac{\cos 3 n}{1+(1.2)^{n}}\right| \leq \frac{1}{1+(1.2)^{n}}<\frac{1}{(1.2)^{n}}=\left(\frac{5}{6}\right)^{n}$, so $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges by comparison with the convergent geometric

$$
\text { series } \sum_{n=1}^{\infty}\left(\frac{5}{6}\right)^{n}\left[r=\frac{5}{6}<1\right] \text {. It follows that } \sum_{n=1}^{\infty} a_{n} \text { converges }
$$

Problem 3

$$
\begin{align*}
& m \frac{d^{2} x}{d t^{2}}+C \frac{d x}{d t}+M x=F_{0} \cos \omega_{0} t \tag{1}\\
& X_{p}(t)=A\left(\omega_{0}\right) \cos \left(\omega_{0} t\right)+B\left(\omega_{0}\right) \sin \left(\omega_{0} t\right) \\
& s u b \operatorname{sti} i+u t c \text { in }(1)=P \\
& m\left(-A \omega_{0}^{2} \cos \omega_{c} t-B \omega_{0}^{2} \sin \omega_{0} t\right)+\left(-A C \omega_{0} \sin \omega_{0} t+\right. \\
& \left.+B C \omega_{0} \cos \omega_{0} t\right)+K\left(A \cos \omega_{c} t+B \sin \omega_{c} t\right)= \\
& F=\cos \omega_{0} t=p \\
& {\left[\left(K-m \omega_{0}^{2}\right) A+C B \omega_{0}\right] \cos \omega_{0} t+} \\
& {\left[\left(h-m \omega_{0}^{2}\right) B-C A \omega_{0}\right] \sin \left(\omega_{0} t=F_{0} \cos \omega_{0} t(2)\right.}
\end{align*}
$$

$$
\begin{align*}
(2) \Rightarrow & \left(k-\omega_{1} \omega_{0}^{2}\right) A+C B \omega_{0}=F_{0} \tag{3}\\
& \left(n-m \omega_{0}^{2}\right) B-C A \omega_{0}=0
\end{align*}
$$

$$
\text { (4) }=0
$$

$$
\begin{align*}
& B=A \tag{6}\\
& \text { in+0 (3) } \\
& \frac{\left.1-m \omega_{0}^{2}\right)}{+\left(\left(\omega_{0}\right)^{2}\right.}
\end{align*}
$$

$$
\begin{align*}
& A=\frac{F_{0}\left(k-m \omega_{c}^{2}\right)}{\left(k-m \omega_{c}^{2}\right)^{2}+\left(c \omega_{0}\right)^{2}} \\
& -B=\frac{F_{0} c \omega_{0}}{\left(k-m \omega_{c}^{2}\right)^{2}+\left(c \omega_{0}\right)^{2}} \tag{7}
\end{align*}
$$

The particulary solution can be wridten a) $X_{p}(t)=\widetilde{A}\left(\omega_{0}\right) \cos \left(\omega_{0} t+\delta\right)$

$$
\begin{gathered}
\text { with } \tilde{A}(\omega)=\sqrt{A^{2}+B^{2}}=\frac{F_{0}}{\sqrt{\left(k-m \omega_{0}^{2}\right)^{2}+\left(c \omega_{0}\right)^{2}}} \\
\tan \delta=-\frac{B}{A}=-\frac{c \omega 0}{k-m \omega_{0}^{2}}=P \\
\delta=\tan ^{-1}\left\{\frac{C \omega_{0}}{m \omega_{0}^{2}-k}\right\}
\end{gathered}
$$

Problem 4
Find the solution* of the differenation equation $y^{\prime \prime}+m y=f(x), m$ is integer, $\quad f(x)=-\delta(-x)$ [odd Sumption.

Under the conditions $y(0)=y(x=1)=0$

* Sine solution.

$$
\begin{equation*}
y(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n n x}{2}\right) \tag{1}
\end{equation*}
$$

Torte $f(x)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right), C_{n}=\frac{2}{i} \int_{0}^{l} f(x) \sin \left(\frac{n n x}{L}\right) d x$

$$
\begin{equation*}
y^{\prime \prime}(x)=\sum_{n=1}^{\infty}\left(-\left(\frac{n \pi}{L}\right)^{2}\right) b_{n} \sin \left(\frac{n n x}{L}\right) \tag{2}
\end{equation*}
$$

substitution into $y^{\prime \prime}+m y=f(x)$ gives

$$
\begin{aligned}
& \operatorname{subsitantion} \operatorname{in} x 0 \quad y^{\prime \prime}+m y=m \\
& \sum_{n=1}^{\infty}\left[-b_{n}\left(\frac{n n}{L}\right)^{2}\right] \sin \left(\frac{n n x}{L}\right)+\sum_{n=1}^{\infty} m \operatorname{bn} \sin \left(\frac{n n x}{L}\right)=\sum_{n=1}^{\infty} \operatorname{cn} \sin \left(\frac{n n x}{L}\right) \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left[-b_{n}\left(\frac{n \pi}{L}\right)^{2}\right] \sin \left(\frac{n}{L}\right) \quad c_{n=1}^{\infty} \\
& \sum_{n=1}^{\infty}\left\{b_{n}\left[m-\left(\frac{n \pi}{L}\right)^{2}\right]-c_{n}\right\} \sin \left(\frac{n n x}{L}\right)=0 \quad \forall x \in[0, L] \\
& \left.\left(\frac{n \pi}{2}\right)^{2}\right]-c_{n}=0=\infty
\end{aligned}
$$

$\overbrace{\square}^{n=1} b_{n}=\left[m-\left(\frac{n \pi}{L}\right)^{2}\right]-c_{n}=0=p$

$$
\begin{aligned}
& b_{n}=\left[m-\left(\frac{n \pi}{L}\right)\right]-c_{n} \\
& b_{n}=\frac{m-\left(\frac{n \pi}{L}\right)^{2}}{c_{n}} \sin \left(\frac{n n x}{L}\right)
\end{aligned}
$$

$$
y(x)=\sum_{n=1}^{\infty} \frac{C_{n}}{m-\left(\frac{n n}{L}\right)^{2}} \sin \left(\frac{n n x}{L}\right)
$$

Set $m=10$
replace the variable x with t .

Problem 5

$$
\begin{aligned}
& F(x)=-\frac{1}{4}\left(e^{i \varepsilon x}-e^{-i \varepsilon x}\right)^{2}+\frac{1}{2}\left(e^{i \varepsilon x}+e^{-i \varepsilon x}\right) \\
& \Rightarrow F(x)=\frac{1}{2} e^{i \varepsilon x}+\frac{1}{2} e^{-i \varepsilon x}-\frac{1}{4} e^{i \varepsilon \varepsilon x}-\frac{1}{4} e^{-i 2 \varepsilon x}+\frac{1}{2} \\
& F(k)=\frac{1}{2} \int_{-\infty}^{+\infty} \underbrace{e^{-i \varepsilon M x\left(k-\frac{\varepsilon}{2 n}\right)}}_{\delta\left(k-\frac{\varepsilon}{2 n}\right)} d x+\frac{1}{2} \int_{-\infty}^{+\infty} \underbrace{e^{-i 2 \pi x\left(k+\frac{\varepsilon}{2 \pi}\right)}}_{\delta(k+\varepsilon / 2 \pi)} d x
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow F(H)=\frac{1}{2}\left[\delta\left(K-\frac{\varepsilon}{2 n}\right)+\delta\left(k+\frac{\varepsilon}{2 n}\right)\right]-\frac{1}{4}\left[\delta\left(H-\frac{\varepsilon}{n}\right)+\delta\left(n+\frac{\varepsilon}{n}\right)\right]+\frac{1}{2} \delta(h)
\end{aligned}
$$

(60 $\cos ^{2}(8 \pi k)=\frac{1}{4}\left[e^{i 16 \pi \pi}+e^{-i 16 n \pi}+2\right]$
Problem 6

$$
\begin{aligned}
& =G(\omega)=\int_{-\infty}^{+\infty} d t t^{2} e^{-|\omega t|}\{\frac{1}{4} \int_{-\infty}^{+\infty} e^{-i 2 n k(t-8)} \overbrace{}^{\delta(t-8)} \overbrace{-\infty}^{+\infty} \int_{-\infty}^{\infty i(2 n k(t+8)} d k \\
& +\frac{1}{2} \int_{\delta(\infty)}^{+\infty} \underbrace{e^{-i 2 n k t}}_{\delta(t)}\} \\
& =Q \quad G(\omega)=\int_{-\infty}^{+\infty} t^{2} e^{-|\omega+|}\left\{\frac{1}{4} \delta(t-8)+\frac{1}{4} \delta(t+8)+\frac{1}{2} \delta(t)\right\} d t \\
& \text { op } G(\omega)=32 e^{-|8 \omega|}
\end{aligned}
$$

(bb) If we set to the general solution $t=0$ we get $u\left(x_{1}+=0\right)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi}{4} x\right)$ (1) rewrite the give $u(x, t=0)=f(x)$ as a sumer sines, $M(x,+=0)=\sin \left(\frac{9 \pi}{2} x\right)+\sin \left(\frac{3 \pi}{2} x\right)$ (2)
If we compare (1) If (2) two n olny tue (1)
term) $n=9$ and $n=B_{3}=1, B_{n}=0$ Thus we howe $B_{9}=B_{3} \quad(n \neq 3,9)$

$$
\begin{aligned}
& \text { Thus we howe } B_{9}=B_{3}=1 \quad 1 \quad e^{-(n \# 3,9)} \\
& =\square\left(\frac{c 3 \pi}{L}\right)^{2}+\sin \left(\frac{3 \pi}{L} x\right)+e^{-\left(\frac{c 9 \pi}{L}\right)^{q}+\sin \left(\frac{9 \pi}{L} x\right)}
\end{aligned}
$$

